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In the previous lecture, we examined how to analyse a FSM using state table, state 
diagram and waveforms.  In this lecture we will learn how to design a fininte state 
machine in order to produce the desired output signals for control purposes.
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There are various ways that we can approach the FSM design problem.  Here we will 
assume that we start with input waveforms that includes all the relevant situations 
that the circuit would need to go through. Another (better approach) is to consider 
the FSM in terms of the algorithm that it implements – in  a way that is more similar 
to thinking about software.

Construct a state diagram to capture what you want to design, making sure that all 
transitions and outputs are as intended.

Let us consider an example.
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Here is a diagram showing a universal state machine. Not shown here is the clock 
signal on all the registers.  
Moore FSM
We generally use Moore FSM in our design on this course.  Remember in Moore 
machines, the output does not change in the middle of a clock cycle.  Therefore the 
output of the machine is determined by the current state of the FSM.
For Moore machines, the output is driven by a D-FF as shown in the slide.
Mealey FSM
For Mealey machines, the output is dependent on both the current state of the FSM 
and the input signals.  Therefore a Mealey machine output can change in the middle 
of a clock cycle.
We prefer to use Moore FSM in our course because its output do not have glitches.  
In contract, a Mealy FSM output is produced directly from the combinational circuits 
without going through a D-FF.  Therefore it may contain glitches.
One disadvantage of a Moore FSM is that the output may have one cycle delay 
(because of the output D-FF).

CURRENT
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We will now consider the design of a FSM to do some defined function:
Design a circuit to eliminate noise pulses.  A noise pulse (high or low) is one that lasts 
only for one clock cycle.  Therefore, in the waveform shown above, IN goes from low 
to high, but included with some high and some low noise pulses.  The goal is to clean 
this up and produce ideally the output OUT as shown.

Here we label the states with letters a, b, c ….  Starting with a when IN = 0, and we 
are waiting for IN -> 1.  Then we transit to b.  However, this could be a noise pulse.  
Therefore we wait for IN to stay as 1 for another close cycle before transiting to c
and output a 1.   If IN goes back to zero after one cycle, we go to a, and continue to 
output a 0.

Similar for state c, where we have detect a true 1 for IN. If IN -> 0, we go to d, but 
wait for another cycle for IN staying in 0, before transiting back to state a.  

Therefore this FSM has four states. Note that in reality, OUT is delayed by ONE clock 
cycle. There is in fact no way around this – we have to wait for two cycles of IN=0 or 
IN=1 before deciding on the value of OUT.



6

This example illustrates how each state represents a particular history that needs to 
be recorded.   
This slide reiterates who we arrives at the state diagram and what each state means.
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Before mapping the state diagram to hardware, we need to perform state encoding
– giving each state a unique binary value.  For the noise eliminator, we have four 
states and therefore if we use binary encoding, we need two state bits to encode all 
four states.  Here we assign values S1:S0 of 00, 01, 11 and 10 to states a, b, c and d 
respectively.

Note that you could assign ANY binary number to any state – and the implemented 
FSM will work. However, different state encoding will result in different 
implementations, affecting the complexity of the digital logic.  

In the assignment above, we deliberating make S1 the same as OUT – this simplifies 
the output logic.
We deliberately make all states linked by arrows only having one bit changing 
(hence 01 -> 11).  This tends to simply the transition logic and reduce glitches.
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Once we have completed state encoding, we can fill in the state transition table with 
binary values for the current state values S1:0, the next state values NS1:0 and the 
output OUT.  This is shown on the left.
If you were to design this FSM by hand, you would need to generate Boolean 
equations for the next state values NS1 and NS2, and the output signal OUT.
You may even use K-map to perform Boolean simplification. 
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Now we can derive the Boolean express for NS1, NS0 and OUT in the usual way.  

Since in general FPGA architecture, the logic elements can handle many inputs (at 
least 4 input signals) and is much more complex than a simple logic gate, 
implementing the Boolean equation for NS1 would only use ONE logic block.
Furthermore, each logic element also include its own registers.  So implementing 
FSM in FPGAs is easy and efficient.
Note that the actual output waveforms shows that OUT has a one clock cycle delay.
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In implementing FSMs using FPGAs, we often use a form of state encoding different 
from simple binary encoding.  It is known as one-hot encoding.  
With one-hot encoding,  only one-bit in the state value is “hot” (i.e. set to ‘1’), and 
all the other bits are “cold” (i.e. reset to ‘0’). 

Using one-hot encoding matches the FPGA architecture well. Each FPGA logic 
element contains a combinational logic module and one or more registers.  
Therefore FPGA is a register-rich architecture.

As an exercise, please implement the noise eliminator using one-hot encoding 
instead of binary encoding as we have in the previous slides by hand (i.e. without 
using CAD tools).  You will appreciate why one-hot encoding is efficient with FPGAs.
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Instead of manually designing a state machine, we usually rely on Verilog 
specification and synthesis CAD tools such as Altera’s Quartus software.
Here we use an EXPLICIT reset signal rst to put the state machine in a known state.  
We also use one-hot instead of binary encoding of the states.  This is specified in the 
parameter block.
Using parameter block to give a name to each of the states has many benefits:  the 
Verilog design is much easier to read; you can change state assignment values 
without needing to change any codes.  In general, parameter block allows you to use 
symbols (names) to replace numbers.  This makes the code easier to read and easier 
to maintain, and it is a good habit to get into.
The state variable declaration reg [NSTATE-1:0] is used here to show that you there 
are 4 states (S_A to S_D).
When specifying FSM in Verilog, you should following the following convention:
•Use always @ (posedge clk) block to specify the state transition.  Note that we use 
the <= assignments (non-blocking) in this always block because you are responding 
to clock edges.  
•Use a separate always @ (*) block to specify the the output logic.  We use normal 
assignments (blocking) here because this is actually a combinational logic block, not 
sequential circuit.
�
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If you enter this Verilog description into Quartus and simulate the circuit, you will 
see the waveform as shown in this timing diagram as expected.  Note that the actual 
waveform for out is NOT the ideal waveform, but is delayed by one clock cycle.



13

Let us now consider another example, which will appear in the Lab Experiment later.  
You are required to design a pulse generator circuit that, on the positive edge of the 
input IN, a pulse lasting for one clock period is produced.

The state diagram for this circuit is shown here.  There has to be three state: IDLE 
(waiting for IN to go high), the IN_HIGH state when a rising edge is detected for IN, 
and WAIT_LOW state, where we wait for the IN to go low again.

Shown here is the timing diagram for this design. This module is very useful. It 
effective detects a rising edge of a signal, and then produces a pulse at the output 
which is one clock cycle in width.
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This FSM has three states: IDEL, IN_HIGH and WAIT_LOW.  Mapping the state diagram to 
Verilog is straight forward.  
1.The declaration part is standard.  This is followed by the parameter section..  Here we use 
straight forward binary number assignment, and therefore we have two state bits (maximum 
four states, but only three are used).
2.The initial section is for initialization.  Normally for a FSM design, it is best to include a 
RESET input signal which, when asserted, will synchronously put the state machine to an 
initial state.  Here we are using a nice feature of FPGAs, which allows the digital circuits to be 
initialised to any states during CONFIGURATION (i.e. when downloading the bit-stream).  
When you configure the FPGA, the registers used for state[1:0] will be loaded with the value 
2’b00The actual state machine is specified with the always @ block. 
3.The first line defines the default output value for pulse is 0.  This ensures that pulse is 
always defined.  
4.The case statement is the best way to specify a FSM.  Each case specifies both the 
conditions for state transitions and the output.  It is important to note that state and output 
specified for each CASE are the next state and next output.  For example, if the FSM is in the 
IDLE state and in==1’b1 on the next positive edge of clk, the FSM will go to state IN_HIGH 
and make pulse go high.
5.The <= assignment specifies that the changes will occur simultaneously when the always @ 
block is exited.    
6.Finally, the default section will catch all unspecified cases. In this case, default section is 
empty (i.e. by default, do nothing).  YOU MUST ALSO INCLUDE THE DEFAULT SECTION IN 
YOUR FSM DESIGN.
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Finally, here is a very useful module that uses a four�-state FSM and a counter.  It is the 
combination of the previous example with a down counter embedded inside the FSM.
The module detects a rising edge on the trigger input, internally counts n clock cycles, then 
output a pulse on time_out.  This effectively delay the trigger rising edge by n clock cycles.

Here we have the port interface and the declaration parts of the Verilog design.
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The FSM state diagram is very similar to that for pulse_gen.v.  However we have four 
states instead of three.  Go through this yourself and make sure that you understand 
how this works. 


